En la región {s ∈ C Re(s) > 1}, esta serie infinita converge y define una función que es analítica en esta región. Riemann observó que la función zeta puede extenderse de manera única por continuación analítica a una función meromorfa en todo el plano complejo con un único polo en s = 1. Esta es la función que se considera en la hipótesis de Riemann.
Para los complejos con Re(s)<1,>
Aplicaciones:
Queremos evaluar la suma 1 + 2 + 3 + 4 + ... , pero podemos reescribirlo como una suma de sus inversos.
La suma S parece tomar la forma de (-1). Sin embargo, −1 sale fuera del dominio de convergencia de la serie de Dirichlet para la función zeta. Sin embargo, una serie divergente con términos positivos como ésta a veces puede ser representada de forma razonable por el método de sumación de Ramanujan. Este método de suma implica la aplicación de la fórmula de Euler-Maclaurin, y cuando se aplica a la función zeta, su definición se extiende a todo el plano complejo.
En particular,
donde la notación (R) indica suma de Ramanujan. Para exponentes pares se tiene que:
y para exponentes impares, se obtiene la relación con los números de Bernoulli:
La regularización de la función zeta se utiliza como un posible medio de la regularización de series divergentes en teoría cuántica de campos. Como ejemplo notable, la función zeta de Riemann aparece explícitamente en el cálculo del efecto Casimir.
No hay comentarios:
Publicar un comentario